

38

Coediciones

Balance hídrico 2010 de la región Ch'orti' en Guatemala

Documento técnico

Guatemala, septiembre de 2011

AUTORIDADES INSTITUCIONALES

Universidad Rafael Landívar

Rector Rolando Alvarado, S.J.

Vicerrectora académica Lucrecia Méndez de Penedo

Vicerrector de investigación y proyección Carlos Cabarrús, S.J.

Vicerrector de integración universitaria Eduardo Valdés, S.J.

Vicerrector administrativo Ariel Rivera

Secretaría general Fabiola de Lorenzana

*Director larna*Juventino Gálvez

Asociación Regional Campesina Ch'orti'

*Presidenta*Marta Alicia Martínez Ramos

Coordinador general Marlon Enamorado

Con el apoyo de:

Reino de los Países Bajos

Guatemala, septiembre de 2011

IARNA-URL y ASORECH (Instituto de Agricultura, Recursos Naturales y Ambiente de la Universidad Rafael Landívar y Asociación Regional Campesina Ch'orti'). (2011). Balance hídrico 2010 de la región Ch'orti' en Guatemala. Documento técnico. Guatemala: Autor.

Serie Coediciones 38

iii+65 p.

Descriptores: recursos hídricos, agua, ambiente, ch'orti', gestión integrada de recursos naturales.

Créditos de la publicación

Preparación del documento

Carlos Cobos

Conducción

Instituto de Agricultura, Recursos Naturales y Ambiente de la Universidad Rafael Landívar Juventino Gálvez Héctor Tuy

Asociación Regional Campesina Ch'orti' David Horacio Estrada Jerez

Tabla de contenido

1.	Ant	eced	entes	1
2.	Zor	na de	estudio	2
3.	Bala	ance	hídrico: fuentes de información para la zona de estudio	5
3	.1.		rta	
	3.1.	1.	Hidrometeorológica	5
	3.1.		Suelo y uso del suelo	
	3.1.	.3.	Disponibilidad en agua subterránea	11
3	.2.	Den	nanda del recurso hídrico	13
	3.2	.1.	Agua doméstica	13
	3.2	.2.	Agua de riego	13
4.	Me	todo	logía del balance hídrico dinámico	14
4	.1.	Pred	ipitación	15
4	.2.	Evap	ooración y evapotranspiración	15
4	.3.	Hun	nedad del suelo	17
4	.4.	Cau	dales	17
4	.5.	Uso	s del agua	17
4	.6.	Cálc	ulo del balance	19
5.	Res	ultac	los del balance hídrico a través de la oferta y demanda del recurso	20
6.	Ind	icado	res	23
6	.1.	Indi	cadores de Estado y de Presión	23
6	.2.	Indi	cadores de Impacto	25
6	.3.	Indi	cadores de Respuesta	27
7.	Cor	nclusi	ones y recomendaciones	29
7	.1.	Con	clusiones	29
7	.2.	Reco	omendaciones	30
8.	Bib	liogra	nfía	31
9.	Ane	exos .		33

1. Antecedentes

ASORECH actualmente está realizando un proyecto de gobernabilidad del agua, financiado por la cooperación del Reino de los Países Bajos. Dentro de dicho proyecto uno de los principales componentes es un sistema de información del estado de los recursos hídricos, con indicadores y una línea base que permita identificar los avances que se tengan con el proyecto.

El presente balance hídrico de la región Chortí, fue elaborado para establecer una línea base del estado de los recursos hídricos en esta región, que sirva para desarrollar un plan de gestión integrada para la misma.

Los datos utilizados fueron obtenidos de diferentes instituciones de la zona, con la coordinación de ASORECH. Los datos fueron estandarizados para poder analizar la información. Para el balance hídrico se utilizó una modificación de la metodología de balance hídrico dinámico, propuesto por el Servicio Nacional de Estudios Territoriales (SNET, 2005) de El Salvador.

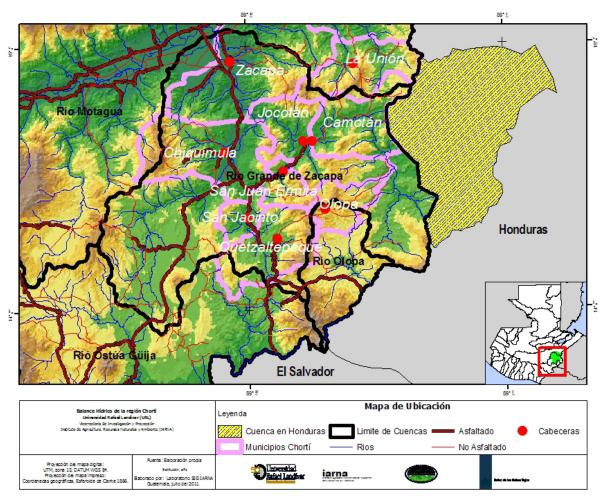
Finalmente los indicadores y la línea base utilizada son similares a los del Perfil Ambiental de Guatemala (IARNA 2005) pero adaptados al interés del proyecto de gobernabilidad.

2. Zona de estudio

La zona de estudio se ubica al Noreste del país, abarcando la cuenca del río Grande de Zacapa, el cual drena al río Motagua y finalmente desemboca en el océano Atlántico (Figura 1). El área Chortí abarca los municipios de Chiquimula, Camotán, Jocotán, Olopa, San Jacinto, San Juan Ermita y Quetzaltepeque del departamento de Chiquimula, así como La Unión y Zacapa del departamento de Zacapa.

Cuando se sobrepone la capa correspondiente al territorio de la cuenca del río Grande de Zacapa, se puede observar que prácticamente toda la zona de estudio se encuentra dentro de este territorio (Figura 2). Es por ello que se decidió usar la cuenca del río Grande de Zacapa, como la base de este estudio para realizar el balance. Es importante notar que esta cuenca es una de las pocas cuencas de Guatemala, cuya parte alta está fuera del territorio nacional, ubicándose en el oeste de Honduras con una superficie de 806 km². Del lado nacional, hasta llegar a la desembocadura en el río Motagua, la cuenca abarca un área de 2475 km² para un total de 3281 km².

Los municipios del área Chortí, que tienen extensión territorial fuera de esta cuenca, son Olopa, La Unión, Zacapa, Chiquimula, Camotán y Quetzaltepeque (Cuadro 1). Quetzaltepeque no tiene poblaciones importantes fuera de la cuenca y Camotán y Chiquimula, tienen áreas relativamente pequeñas fuera de la cuenca. El balance se hará en la cuenca del río Grande para poder cuadrar los resultados y luego se calculan los balances por municipios. El balance para las zonas que no están dentro de la cuenca del río Grande de Zacapa se dificulta, porque son áreas relativamente pequeñas con respecto al total de la cuenca.


Cuadro 1 **Área de municipios Chortí y % dentro del río Grande de Zacapa.**

Código	Municipio	Área total municipio en km² *	Área municipio en Cuenca Río Grande en km²	% Área en Cuenca río Grande	Área fuera de la cuenca en km²	% Área municipio fuera de la Cuenca del río Grande	Otra cuenca donde se ubica
2005	Camotán	232	197	85%	35	15%	Motagua
2001	Chiquimula	353	310	88%	43	12%	Motagua
2004	Jocotán	252	252	100%	0	0%	
2006	Olopa	112	58	52%	54	48%	Olopa
2009	Quetzaltepeque	245	196	80%	49	20%	Ostua
2010	San Jacinto	71	71	100%	0	0%	
2003	San Juan Ermita	81	81	100%	0	0%	
1909	La Unión	215	29	13%	186	87%	Motagua
1901	Zacapa	517	351	68%	166	32%	Motagua

^{*} El área es la que calcula el GIS en base a los límites municipales

Figura 1

Zona de estudio

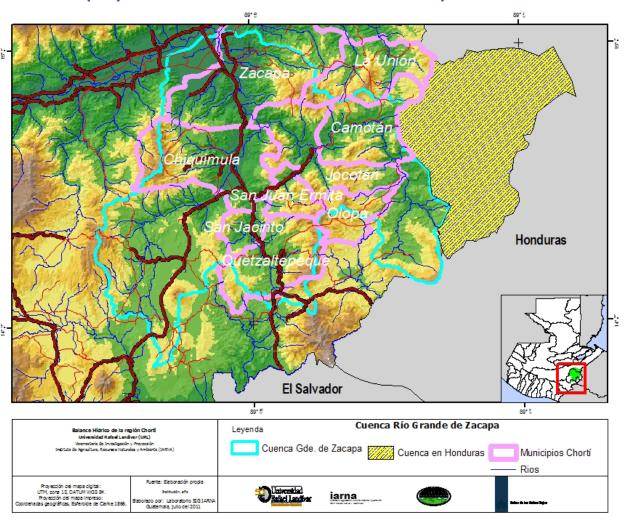


Figura 2 **Área municipal y área de la cuenca del río Grande de Zacapa**

3. Balance hídrico: fuentes de información para la zona de estudio

La información recolectada se puede catalogar en los siguientes grandes grupos:

- Hidrometeorológica (oferta)
- Uso del suelo y características del suelo (oferta)
- Agua subterránea (oferta)
- Usos del agua (demanda)

3.1. Oferta

3.1.1. Hidrometeorológica

La información hidrometeorológica fue recabada principalmente de las estaciones de INSIVUMEH. Las estaciones analizadas en el tema meteorológico se muestran en la Figura 3. Los registros utilizados se adjuntan en un archivo digital, mientras que un listado detallado de las mismas y un resumen gráfico, se presentan en el Anexo 1.

Para determinar los datos a utilizar se hizo un análisis de la información recolectada, por décadas, del que se determinó que a pesar de los posibles efectos globales del cambio climático, los extremos tanto de máximos como de mínimos, no se presentaron necesariamente en la última década. Por ello se decidió hacer el análisis con los promedios mensuales del registro total de cada una de las estaciones, para los parámetros de evaporación y precipitación. Con estos parámetros se hicieron isolíneas mensuales interpolando entre las estaciones. Las Figuras 4 y 5 muestran el ejemplo del mes de octubre para evaporación y lluvia respectivamente. El detalle para cada mes se muestra en el archivo digital. Los otros datos como humedad y temperatura no fueron utilizados, por la fórmula que se utilizó, para determinar la evapotranspiración que se explica más adelante en la metodología.

Con respecto a las estaciones hidrológicas, la Figura 6 muestra la ubicación de las mismas en el área de estudio. La información de la estación Camotán es la que tiene mejor registro, sin embargo, debido a que la cuenca concentra su precipitación en la parte alta, el caudal especifico (m³/s/km²) de esta estación solo puede usarse para la zona alta, mientras que la zona baja está mejor representada por la estación Petapilla.

Para estimar el caudal proveniente de Honduras, se calculó en base al caudal de la estación Camotán haciendo una simple relación de áreas. Los resultados de estos cálculos

se presentan en el cálculo del balance. La lista detallada de las estaciones hidrológicas, así como los caudales de estas estaciones y las estimaciones para la parte hondureña de la cuenca, se presentan en forma mensual en el Anexo 2.

Figura 3 **Ubicación de estaciones meteorológicas**

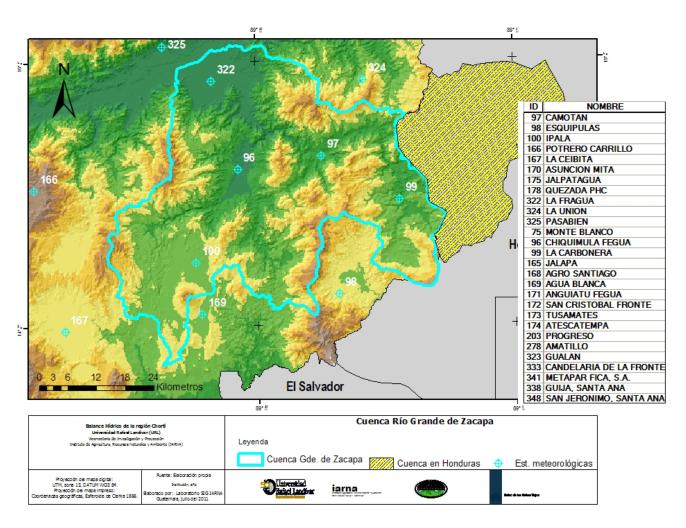


Figura 4
Isoyetas medias del mes de octubre en mm

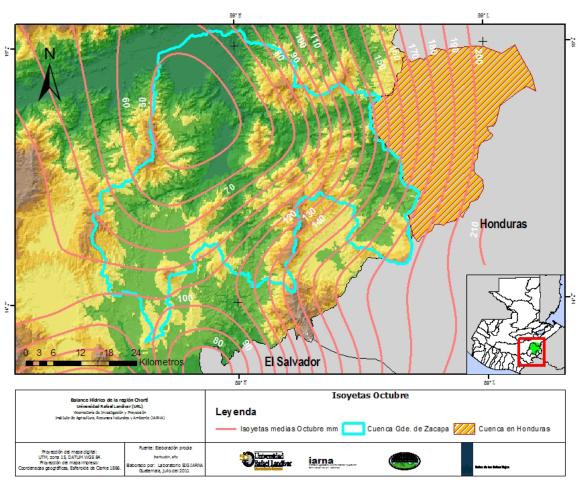


Figura 5
Isolíneas de evaporación del mes de octubre en mm

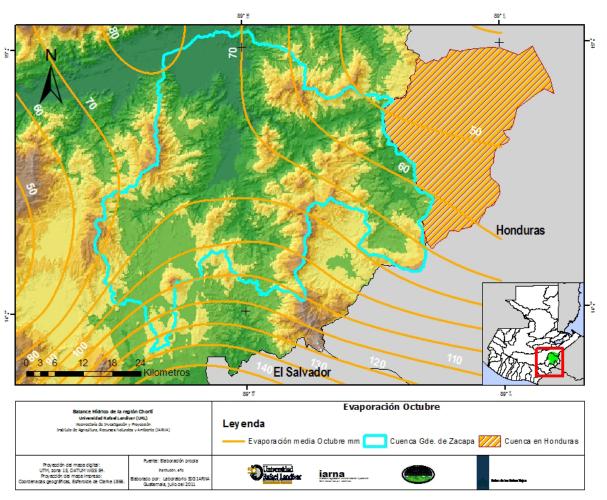
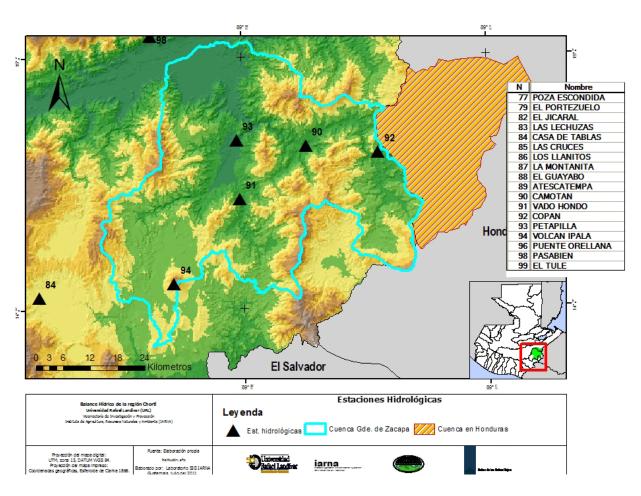



Figura 6 **Ubicación de estaciones hidrológicas**

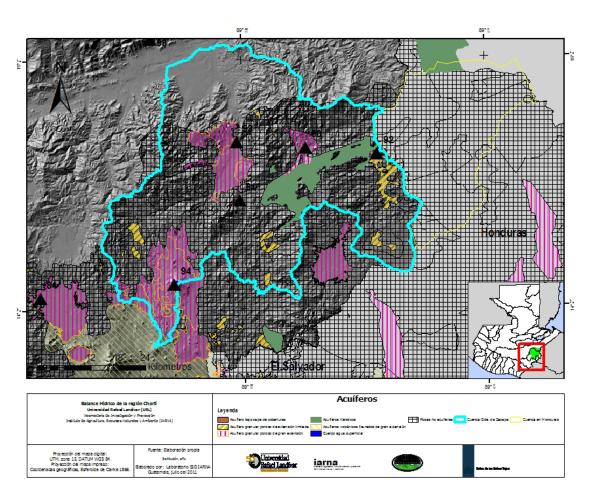
3.1.2. Suelo y uso del suelo

Para determinar las características de los suelos de la zona, se utilizó la información existente del mapa de Simmons y de la taxonomía de los mismos (mapas del SIG MAGA a escala 1:250,000). Los datos fueron verificados con algunos datos puntuales de suelos obtenidos de algunos estudios de tesis del CUNORI, verificándose manualmente la coincidencia de los datos, pero usando esta información solo para corroborar los datos. Con respecto al uso del suelo se utilizó el mapa de uso del suelo del MAGA elaborado en 2005. Se utilizó una capa efectiva general de suelo de 90 cm en toda la región, para fines de la simulación.

Con las características del tipo de cobertura se modelará la evapotranspiración potencial y el contenido de humedad del suelo.

3.1.3. Disponibilidad en agua subterránea

El estudio llamado Informe Final del Análisis Hidrogeológico del Trifinio 2009, elaborado por José Roberto Duarte Saldaña, describe en bastante detalle los acuíferos de la zona y cubre prácticamente el área de interés. La mayor parte de la zona son rocas sin capacidad acuífera, quedando solamente un acuífero Kárstico que abarca parcialmente Jocotan, Camotán y San Juan Ermita (Figura 7). Luego hay otros dos acuíferos granulares extensos de importancia en Chiquimula y otro entre Jocotán y Camotán que coinciden con las zonas aluviales de los ríos (Duarte 2009).


El acuífero identificado como del **tipo poroso de gran extensión,** se considera medianamente productivo y está formado por materiales piroclásticos, como lapilli, ceniza volcánica y tobas (piroclastos compactados), que debido a su granulometría y grado de compactación, presentan una conductividad hidráulica de mediana a baja y su rango de valores de transmisividad puede variar de 200 a 500 m²/día. La profundidad a la que se encuentra el agua oscila entre 5 y 15 m (Duarte 2009).

Por su parte la unidad hidrogeológica denominada como **rocas no acuíferas**, consiste en tobas aglomeradas y brechosas, lahares cementados y flujos macizos de lavas, con conductividades hidráulicas muy bajas o casi nulas, debido a su baja porosidad o a su alto grado de compactación y cementación. La profundidad a la que se encuentra esta unidad es desconocida. Se consideran barreras negativas por presentar permeabilidad baja, aunque a lo largo de líneas de falla pueden presentar permeabilidad secundaria por fracturas (Duarte 2009).

En otras palabras la zona tiene una capacidad relativamente baja de almacenamiento.

Figura 7

Mapa de unidades hidrogeológicas

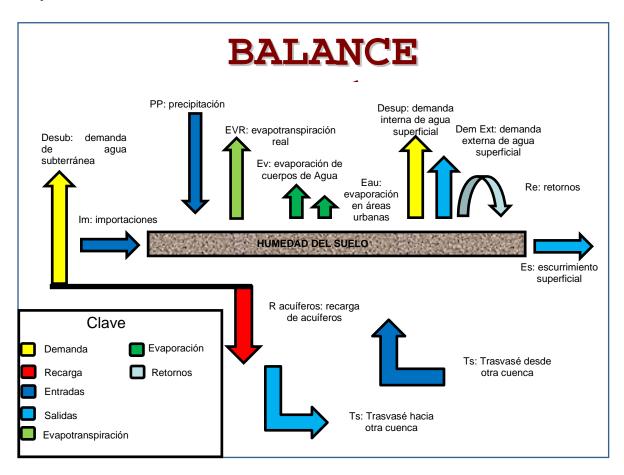
3.2. Demanda del recurso hídrico

El recurso hídrico es utilizado principalmente en agua para uso doméstico y agua para riego. Para el agua doméstica se recabó información con el Ministerio de Salud Pública, las Municipalidades y utilizando las bases de datos de la Unidad Ejecutora del Programa de Acueductos Rurales del Instituto de Fomento Municipal (UNEPAR-INFOM). Para la información de áreas de riego se usó la información que existía de áreas de riego del Maga del año 2000, y se actualizó con información más reciente del Ministerio de Agricultura, Ganadería y Alimentación proporcionada por ASORECH. También se tomó en cuenta la información de los proyectos realizados por ASORECH relacionados con agua, saneamiento y riego.

3.2.1. Agua doméstica

En el caso de agua para uso doméstico, se organizó una base de datos que se presenta en los archivos digitales, con información detallada, requerida de estos sistemas. En este sentido la información existente es muy heterogénea y desactualizada. La información de cobertura, continuidad y cantidad de agua para los sistemas está basada en la información recabada por INFOM, pues las municipalidades no cuentan con esta información, más que para las cabeceras municipales. Por ello se calculó el consumo de agua doméstica en dos condiciones diferentes: la primera asumiendo la población existente al 2010, pero con las condiciones de cobertura del año 2002 (fecha media de la información de las bases de datos del SAS). Para algunos casos donde se conocía la continuidad del servicio se estimó el volumen que eso indicaría (cabeceras municipales). En la segunda se asumió una condición de cobertura ideal, es decir la población con cobertura y continuidad en 100%. Se calcularon y estimaron poblaciones a futuro a los años 2015 y 2025, calculando la demanda de agua doméstica para esas poblaciones en el caso ideal. Aunque hay alguna información detallada por comunidades, la distribución se hizo en forma general a todo el municipio, pues los consumos se hubiesen tenido que especificar en puntos específicos, ya que la ubicación de las comunidades no está distribuida con polígonos de área en todos los casos.

3.2.2. Agua de riego


Para el agua de riego se calculó el consumo de agua de acuerdo al coeficiente de cultivo, a la eficiencia del sistema de riego y al área a regar de acuerdo a los coeficientes que se presentan en la metodología. Los volúmenes se calcularon para los períodos mensuales de noviembre a abril. Se presenta la base de datos con los detalles en forma digital. Aunque hay una ubicación aproximada de los sistemas de riego, ésta no es suficiente para ubicarlos en áreas específicas en el mapa. Por eso la información fue resumida a nivel de municipio, dividiendo el consumo de agua de riego equitativamente en toda el área del municipio.

4. Metodología del balance hídrico dinámico

La metodología como ya se mencionó se basa en la propuesta metodológica del SNET para este tipo de estudios. Una de las grandes ventajas de esta metodología es que hace un balance a nivel mensual, lo que permite determinar los excesos y limitaciones en diferentes períodos.

Para determinar el balance es necesario conocer las entradas (precipitación, las importaciones, trasvases o alimentación de los acuíferos) y las salidas del sistema, que podemos dividir en naturales (evaporación, evapotranspiración, evaporación de cuerpos de agua, evaporación de zonas urbanas, recarga de acuíferos y la humedad del suelo) y las producidas directamente por la demanda de usos del agua (agua paraísos domésticos y riego). Esquemáticamente se describe el balance en la Figura 8.

Figura 8
Esquema del balance hídrico

Fuente: Balance Hídrico Dinámico e Integrado de El Salvador.

La demanda puede ser satisfecha si existe una oferta que exceda esa demanda. Por ello se determinó primero la oferta y luego la demanda. Para tener un sistema cerrado dentro del área de estudio se utilizó la cuenca del río Grande de Zacapa.

Para determinar la oferta se utilizó la precipitación, la evapotranspiración potencial y real, la humedad del suelo, los caudales provenientes de Honduras y los caudales de salida hacia el río Motagua.

4.1. Precipitación

Para la precipitación con base a las isoyetas generadas se construyó una red triangular irregular (TIN por sus siglas en inglés) y de esta se creó una cuadrícula de 50 por 50 metros, dándole a cada cuadro la magnitud de la precipitación que le corresponde.

4.2. Evaporación y evapotranspiración

Primero se calculó una cuadrícula de la evaporación registrada en forma similar a lo que se hizo con la precipitación, creando una cuadrícula de 50 por 50 metros con el valor de evaporación registrado para cada cuadro.

Utilizando este valor se estimó la evapotranspiración potencial en función de la evapotranspiración medida, en base al método propuesto por Simpfendörfer (Simpfendörfer, 2000) utilizando la siguiente fórmula:

$$ET_c = E_b * K_p * K_c$$

Donde

 ET_c = Evapotranspiración del cultivo o demanda de agua del cultivo (mm/mes o mm/día).

E_b = Evaporación en bandeja o en tanque (mm/mes o mm/día)

K_p = Coeficiente de bandeja o tanque, es un coeficiente que puede variar entre 0.6 y 0.8 de acuerdo a viento y humedad relativa

K_c = Coeficiente de cultivo

La evaporación de bandeja (E_b) es la evaporación que se tiene de los datos meteorológicos. Esta evaporación se afecta por el coeficiente de bandeja (K_p) que para ser conservadores, se usará el valor 0.8. Finalmente el coeficiente de cultivo depende del tipo de cultivo de cada área. Para ello se usan los coeficientes del Cuadro 2, que es un cuadro adaptado de los datos que presenta la metodología de El Salvador, que originalmente fue extraído de datos generados por la FAO para diferentes cultivos.

Cuadro 2

Coeficiente Kc para diferentes tipos de cultivo y meses del año

Código		-	-	-	-	-	-	-		-	-		•
de uso	Uso de suelo	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
227	Árboles frutales	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
42	Bosque conífero	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
232	Papaya	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
2211	Mango	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
41	Bosque latifoliado	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
43	Bosque mixto	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
2210	Aguacate	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
221	Café	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
312	Charral o matorral	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2432	Cultivo de piña, melón y sandía con riego	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
212	Cultivos anuales asociados con cultivos	1.00	1.00	1.00	1.00	0.70	1.00	1.05	1.05	1.00	1.00	1.00	1.00
211	Granos básicos	1.00	1.00	1.00	1.00	0.35	1.00	1.05	1.05	0.60	1.00	1.00	1.00
62	Humedal con otra vegetación	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
52	Lagos, lagunas y otros (lénticos)	1.15	1.15	1.15	1.15	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.15
223	Cardamomo	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
251	Pastos cultivados	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.10	1.10	1.00
311	Pastos naturales	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.10	1.10	1.00
71	Playas, dunas y arenales	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
63	Praderas Pantanosas	1.15	1.15	1.15	1.15	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.15
51	Ríos	1.15	1.15	1.15	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
243	Hortalizas – ornamentales	1.00	1.00	1.00	1.00	0.70	1.00	1.05	1.05	0.95	1.00	1.00	1.00
74	Zonas de extracción minera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
151	Zonas quemadas, zonas verdes urbanas	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1213	Zonas verdes urbanas	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
411	Manglar	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
999	Yuca	1.00	1.00	1.00	1.00	0.70	1.00	1.05	1.05	0.95	1.00	1.00	1.00

Fuente: Adaptado del Balance Hídrico Dinámico de El Salvador.

El cuadro anterior a través del código de uso, se relaciona con el mapa de uso del suelo para agregarle estos factores y se convierte a una cuadrícula de factores K_c por cada mes. Luego haciendo "álgebra de mapas", se multiplica la cuadrícula de la evaporación del mes_n

por 0.8 y luego por la cuadrícula de K_c del mes_n obteniendo la evapotranspiración potencial. La evapotranspiración real dependerá de la lluvia y la humedad del suelo.

4.3. Humedad del suelo

La capacidad de humedad del suelo permite no solo el almacenamiento de una parte del agua, sino también, saber cuánto más pueden usar la vegetación para luego evapotranspirarla. De tal forma que se pueda determinar la evapotranspiración real, que usualmente es menor que la potencial, pero no puede ser mayor que ésta.

Para determinar la capacidad de almacenamiento de agua, encontramos que el volumen de almacenamiento es la diferencia entre la capacidad de campo y el punto de marchitez. En el balance hídrico de El Salvador, se asignaron valores de capacidad de campo y de punto de marchitez en base a la taxonomía del suelo. Algunos de los suelos existentes en Guatemala no son los mismos de El Salvador, por lo que fue necesario adaptar los datos al contexto local. El Cuadro 3 muestra los valores utilizados para la zona Chortí, donde incluye la unidad taxonómica, para poder conectarlo con el mapa de taxonomía de suelos y ubicarlo geográficamente.

Por no tener suficiente información de espesor de los suelos, se asumió un espesor general de 60 centímetros en toda el área. Una vez se tiene la humedad del suelo, se pueden iniciar los cálculos y determinar la evapotranspiración real y la disponibilidad o excedente para escorrentía.

4.4. Caudales

Los caudales se obtuvieron de la estación Camotán y Palmilla, utilizando un caudal específico de cada mes para aguas arriba de la estación Camotán, basado en la estación Camotán y otro basado en Palmilla para todo el resto del área. Se utilizó este criterio, porque el comportamiento de la precipitación y la evaporación es la parte oeste y baja de la cuenca, es muy diferente que aguas arriba de Camotán, evitando así una sobrestimación de la escorrentía producida.

4.5. Usos del agua

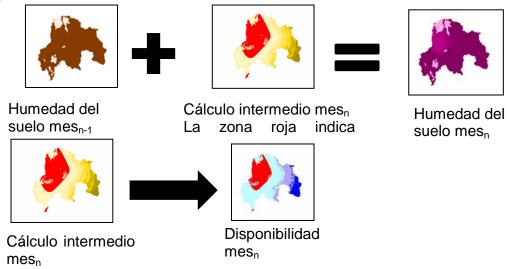
Los usos del agua se calcularon dividiendo el volumen requerido por agua doméstica y agua de riego, entre el área del municipio, obteniendo de esta forma un valor en mm para cada cuadro del municipio, para cada uno de los meses y para cada uno de los casos.

Cuadro 3

Capacidad de campo, punto de marchitez permanente y agua disponible, para profundidad del suelo de 60 cm de acuerdo a taxonomía


Código	Clasificación	Retención mm	Capacidad de campo mm	Punto de marchitez mm
Ds-Eo	Ustands	100	160	60
Ds-Eo-Ps	Ustands	100	190	90
Ds-Ep	Ustands	100	190	90
Ds-Ls-Eo	Ustands	100	190	90
Ds-Ps	Ustands	100	190	90
Dv-Ep	Vitrands	100	190	90
Ео	Orthents	100	160	60
Ео-Ер	Suelo de valles	100	160	60
Eo-Ep-Eq	Orthents	100	160	60
Eo-Eq	Orthents, aquepts	100	160	60
Eo-Md-Vs	No Clasificado	100	160	60
Eo-Pq	Orthents, aquents	100	160	60
Eo-Ps	Orthents	100	160	60
Eo-Ps-Ls	Orthents	100	160	60
Eo-Vs	Orthents	100	160	60
Eo-Vs-Ps	Orthents	100	160	60
Ер	Psamments	100	160	60
Ep-Ef-Ps-Eo	Entisoles, Inceptisol	100	160	60
Ep-Eo	Psamments	100	160	60
Ep-Ms	Psamments	100	160	60
Eq-Pq	Aquents. Aquepts	100	160	60
Ls-Ps	Ustalfs	100	190	90
Ls-Us	Ustalfs	100	160	60
Ms	Ustolls	100	190	90
Pq	Aquepts	100	160	60
PQ	Inceptisoles	100	160	60
Pq-Ms	Aquepts, Ustolls	100	190	90
Pq-Ps	Aquepts , Ustepts	100	160	60
Ps	Usteps	100	160	60
Ps-Eo	Usteps	100	160	60
Ps-Ls	Usteps	100	190	90
Ps-Ls-Eo	Usteps	100	160	60
Ps-Ms	Inceptisoles	100	160	60
Ps-Vs	Usteps	70	200	130
Ps-Vs-Eo	Usteps	70	200	130
Um-Ps	Aluviales	100	160	60
Vq-Pq-Eo	Aquerts , Aquepts, Or	70	200	130
Vs	Usterts	70	200	130
Vs-Eo	Usterts	70	200	130
Vs-Ls-Ps	Vertisoles, Alfisoles	70	200	130
Vs-Ms	Usterts	70	200	130
Vs-Ms-Ps	Usterts	70	200	130
Vs-Ps-Eo	Usterts	70	200	130

Fuente: Adaptación del Balance Hídrico de El Salvador.


4.6. Cálculo del balance

Para calcular el balance se hace la siguiente álgebra de mapas (Figura 9):

Figura 9 **Esquema del cálculo del balance hídrico**

La zona roja o negativa se reduce a la humedad del suelo del mes anterior para obtener la humedad del suelo del mes actual

Fuente: Elaboración propia, 05/2011.

Se inicia con el mes de octubre, ya que de esta manera se asegura que la humedad del suelo está saturada y se obtienen los valores para cada mes. De la misma manera se generan los valores de cada mes para los usos del agua.

Para terminar el cálculo es necesario convertir los caudales de entrada y salida de la cuenca a mm y calcular si hay almacenamiento subterráneo, o si por el contrario, el agua subterránea alimenta los caudales de la zona.

Los resultados finales se presentan en forma de cuadro en la siguiente sección.

5. Resultados del balance hídrico a través de la oferta y demanda del recurso

Los resultados del balance hídrico para la cuenca del río Grande de Zacapa se resumen en el Cuadro 4. Este cuadro muestra el balance para el año 2010, asumiendo una cobertura doméstica ideal (100% de cobertura) y la real (con las coberturas reportadas). Para cada mes existe un archivo digital.

El Cuadro 5 muestra el balance final para la cuenca del río Grande de Zacapa, con la demanda ideal del 2015 y del 2025. Para la proyección de las demandas en el caso del agua doméstica, se proyectó la población de acuerdo a las tasas de crecimiento de los municipios y en base a la población se calculó la demanda requerida, asumiendo una cobertura y continuidad del 100%. Para el riego, la demanda se intentó proyectar en base al crecimiento detectado del año 2000 al 2010, sin embargo, la nueva información parece mostrar una reducción en el área de riego del 4%. Esto puede deberse a varias causas, una sobreestimación en los datos del año 2000 o que las nuevas áreas no hayan sido correctamente registradas. Estos datos requieren una revisión con visitas de campo. En cualquier caso, hay un crecimiento en ciertos municipios, por lo que se estimó la tasa de crecimiento de 6% en 10 años, que corresponde al municipio de Esquipulas, asumiendo que el crecimiento será similar hacia el 2015 y 2025.

Es importante hacer notar que es necesario incluir otros usos del agua como industriales y agroindustriales, dentro de la demanda, como los beneficios de café y otros. Sin embargo, aunque ANACAFE prometió proporcionar esta información, aún no se ha logrado obtenerla y no fue incluida en este estudio. Otros usos como podrían ser los turicentros y algunos otros usos industriales, no pudieron ser detectados, cuantificados y ubicados geográficamente.

También se hicieron balances municipales, aunque con las debidas reservas, pues la estimación del almacenamiento de agua subterránea es complicada, pues para eso es necesario hacerlo a nivel de toda la cuenca y eso incluye municipios de los cuáles no se recopilo información por las limitaciones de tiempo de este estudio. También hay resultados para la zona Chortí pero no incluyen ni escorrentía superficial ni almacenamiento subterráneo.

Es importante tomar en cuenta las limitaciones de información que deben mejorarse y que se mencionan en las recomendaciones de este documento.

Cuadro 4

Balance hídrico mensual cuenca del río Grande de Zacapa 2010 con agua doméstica ideal y real

						Vol	umen en miles	de m³					
Oferta	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total
Disponibilidad neta	238.22	115.48	73.22	310.74	7,039.75	248,067.07	221,781.27	256,140.84	365,484.78	80,326.25	9,127.29	3,147.78	1,191,852.69
Caudales naturales	25,672.65	15,707.39	13,973.72	12,967.18	23,663.41	94,155.15	108,349.47	139,412.19	199,722.22	134,082.99	53,762.07	34,685.01	856,153.44
Agua subterránea	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	335,699.25
Disponibilidad neta + agua subterránea	28,213.16	28,090.41	28,048.16	28,285.67	35,014.68	276,042.01	249,756.21	284,115.78	393,459.71	108,301.19	37,102.23	31,122.71	1,527,551.93
Demanda real 2010													
Agua doméstica 2010	756.56	683.35	756.56	732.16	756.56	732.16	756.56	756.56	732.16	756.56	732.16	756.56	8,907.92
Agua para riego 2010	7,351.51	6,640.29	7,351.51	7,114.51	-	-	-	-	-	-	7,114.51	7,351.51	42,923.86
Otros usos	0.00	-	-	-	-	-	-	-	-	-	-	-	
Total demanda	8,108.08	7,323.64	8,108.08	7,846.67	756.56	732.16	756.56	756.56	732.16	756.56	7,846.67	8,108.08	51,831.78
Balance real 2010	-7,869.86	-7,208.16	-8,034.86	-7,535.93	6,283.18	247,334.92	221,024.71	255,384.28	364,752.62	79,569.69	1,280.62	-4,960.30	1,140,020.91
Demanda ideal 2010													
Agua doméstica 2010	1,465.54	1,323.71	1,465.54	1,418.26	1,465.54	1,418.26	1,465.54	1,465.54	1,418.26	1,465.54	1,418.26	1,465.54	17,255.51
Agua para riego 2010	7,351.51	6,640.29	7,351.51	7,114.51	-	-	-	-	-	-	7,114.51	7,351.51	42,923.86
Otros usos	-	-	-	-	-	-	-	-	-	-	-	-	
Total demanda 2010	8,817.05	7,964.00	8,817.05	8,532.78	1,465.54	1,418.26	1,465.54	1,465.54	1,418.26	1,465.54	8,532.78	8,817.05	60,179.37
Balance ideal 2010	-8,578.83	-7,848.52	-8,743.83	-8,222.04	5,574.21	246,648.81	220,315.74	254,675.31	364,066.52	78,860.71	594.51	-5,669.28	1,131,673.31

Cuadro 5

Balance Hídrico mensual cuenca del río Grande de Zacapa con agua doméstica ideal 2015, 2025

		Volumen en miles de m ³												
Oferta	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Total	
Disponibilidad neta	238.22	115.48	73.22	310.74	7,039.75	248,067.07	221,781.27	256,140.84	365,484.78	80,326.25	9,127.29	3,147.78	1,191,852.69	
Caudales naturales	25,672.65	15,707.39	13,973.72	12,967.18	23,663.41	94,155.15	108,349.47	139,412.19	199,722.22	134,082.99	53,762.07	34,685.01	856,153.44	
Agua subterránea	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	27,974.94	335,699.25	
Disponibilidad neta + agua subterránea	28,213.16	28,090.41	28,048.16	28,285.67	35,014.68	276,042.01	249,756.21	284,115.78	393,459.71	108,301.19	37,102.23	31,122.71	1,527,551.93	
Demanda 2015														
Agua doméstica 2015	1,646.67	1,487.32	1,646.67	1,593.56	1,646.67	1,593.56	1,646.67	1,646.67	1,593.56	1,646.67	1,593.56	1,646.67	19,388.20	
Agua para riego 2015	7,572.06	6,839.50	7,572.06	7,327.95	-	-	-	-	-	-	7,327.95	7,572.06	44,211.57	
Otros usos	0.00	-	-	-	-	-	-	-	-	-	-	-		
Total demanda 2015	9,218.72	8,326.81	9,218.72	8,921.51	1,646.67	1,593.56	1,646.67	1,646.67	1,593.56	1,646.67	8,921.51	9,218.72	63,599.77	
Balance 2015	-8,980.51	-8,211.34	-9,145.50	-8,610.77	5,393.08	246,473.52	220,134.61	254,494.18	363,891.22	78,679.58	205.79	-6,070.95	1,128,252.91	
Demanda 2025														
Agua doméstica 2025	2,096.98	1,894.05	2,096.98	2,029.33	2,096.98	2,029.33	2,096.98	2,096.98	2,029.33	2,096.98	2,029.33	2,096.98	24,690.23	
Agua para riego 2025	8,026.38	7,249.87	8,026.38	7,767.63	-	-	-	-	-	-	7,767.63	8,026.38	46,864.27	
Otros usos	0.00	-	-	-	-	-	-	-	-	-	-	-	0.00	
Total demanda 2025	10,123.36	9,143.91	10,123.36	9,796.96	2,096.98	2,029.33	2,096.98	2,096.98	2,029.33	2,096.98	9,796.96	10,123.36	71,554.49	
Balance 2025	-9,885.14	-9,028.44	-10,050.14	-9,486.22	4,942.77	246,037.74	219,684.30	254,043.87	363,455.44	78,229.27	-669.67	-6,975.58	1,120,298.19	

6. Indicadores

Uno de los objetos del balance es poder dar indicadores que permitan demostrar los avances del proyecto y establecer una línea base. Los indicadores que se usa en el Perfil Ambiental son los siguientes:

Estado:

- Oferta
- Volumen disponible
- Volumen disponible per cápita

Presión

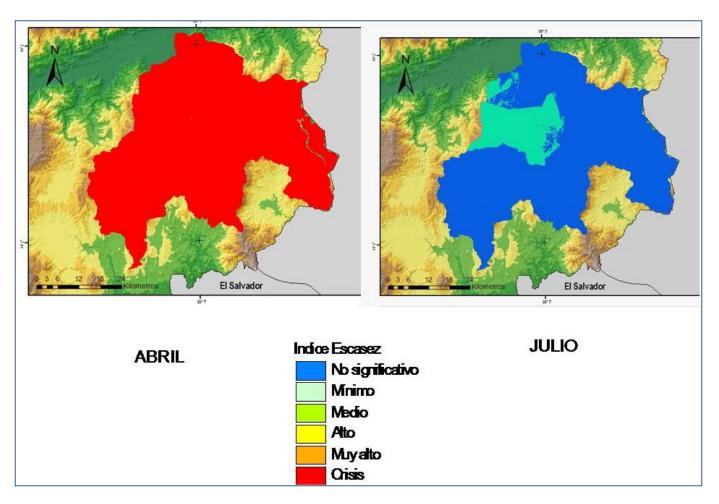
- Utilización de agua
- Uso de agua sin agricultura de secano
- Uso de agua sin agricultura de secano e hidroeléctricas
- Utilización de agua per cápita
- Escasez de agua en %

Impacto

- Índice de cobertura de agua potable (% de hogares)
- Incidencia de enfermedades de origen hídrico (No. de casos/1000 habitantes)
- Incidencia de casos mortales por enfermedades de origen hídrico (No. de casos/10,000 habitantes)
- Mortalidad infantil por enfermedades de origen hídrico (No. de casos)

Respuesta

- Índice de cobertura de saneamiento (% de hogares)
- Volumen tratado de las descargas domesticas producidas (% de hogares)
- Grado de protección de las zonas de recarga


En el anexo 3 se muestra la forma de cálculo de cada uno de los indicadores.

6.1. Indicadores de Estado y de Presión

Con respecto a los indicadores de estado y presión el balance hídrico da directamente los resultados obteniéndose el índice de escasez de la relación demanda-oferta. Se presenta para el mes más crítico y para el mes menos crítico en la Figura 10. Los meses individuales se muestran en el Anexo 4.

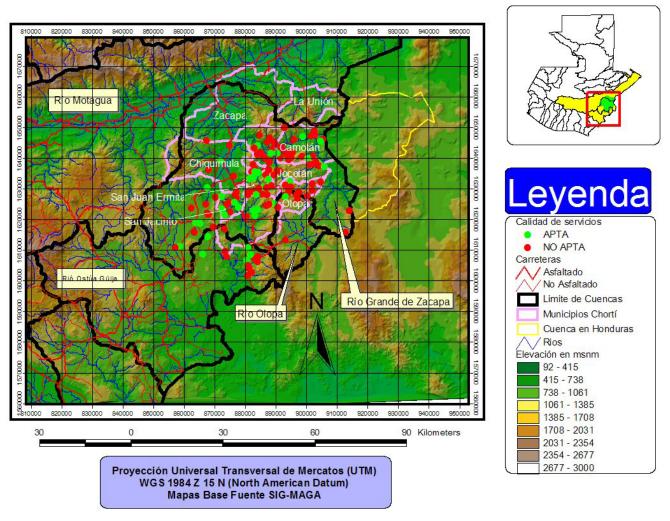
Figura 10

Mapas del índice de escasez del mes de abril y el mes de julio en la cuenca del Rio Grande de Zacapa

6.2. Indicadores de Impacto

Con respecto a los indicadores de impacto el índice de cobertura no está actualizado y en la mayoría de los casos es de 10 años atrás, con la excepción de las cabeceras municipales algunas de las cuales cuentan con mejor información. En este sentido, para fines del proyecto este indicador es insuficiente, pues en la mayoría de los casos son mejoras a los servicios existentes, que si bien en algunos casos pueden traducirse en una mejora de cobertura, no siempre es así. Por ello se propone incluir dos indicadores más:

- Continuidad que no es más que horas de servicio al día
- Calidad que indica la calidad del agua en los sistemas.


Para el primer indicador propuesto la información actual es insuficiente y deberá recabarse más información en este aspecto.

Para el segundo indicador, la información del Ministerio de Salud Pública y Asistencia Social (MSPAS) es bastante buena, para usarse de base, pues con su programa de vigilancia de los servicios de agua tiene el comportamiento de varios años en diferentes sistemas de diferentes comunidades. La Figura 11 muestra un mapa con la situación de la calidad de agua de los proyectos controlados por el MSPAS. Y aunque esta es una línea base adecuada para iniciar no todos los sistemas mejorados por el proyecto están incluidos en esa lista.

Con respecto a los índices de morbilidad y mortalidad con respecto a enfermedades de origen hídrico, el impacto del programa es difícil de medir porque las estadísticas de salud son en general a nivel municipal y las intervenciones del proyecto son a nivel de comunidades. Si fuese un programa a nivel municipal que abracar todas las comunidades esto sería suficiente. Si bien es cierto hay una de morbilidad por comunidades para San Juan Ermita, los otros municipios no cuentan con este detalle. Un levantamiento similar al de San Juan Ermita sería necesario para todos los municipios del proyecto. El cuadro 6 muestra los indicadores a nivel municipal.

Figura 11

Mapas con la calidad de agua de los servicios

Cuadro 6 **Indicadores de impacto**

Código	Municipio	Cobertura de agua potable %	Incidencia de enfermedades de origen Hidrico No. de casos /1000 habitantes	Incidencia de casos mortales por enfermedades de origen Hidrico No. de casos /10,000 habitantes	Mortalidad de niños menores de 5 años por enfermedad es de origen hídrico
1901	Zacapa	82	17.35	*	6
1909	La Unión	91	20.00	*	5
2001	Chiquimula	74	52.43	*	6
2003	San Juan Ermita	86	157.87	2	10.00
2004	Jocotán	93	80.95	2.56	7
2005	Camotán	61	170.87	3.06	11
2006	Olopa	74	175.53	1.72	4
2009	Quezaltepeque	86	51.21	0.54	14.2
2010	San Jacinto	17	46.83	1.00	3

^{*} No se pudo definir mortalidad solo por origen hídrico

Fuente: Planes de desarrollo municipal SEGEPLAN, 05/2011.

6.3. Indicadores de Respuesta

Para los indicadores de resultado simplemente se cuenta con la cobertura de saneamiento de INFOM que debería usarse como línea base, pero que debe ser actualizada. Los municipios no pudieron actualizar la información más reciente.

En el caso de tratamiento de aguas servidas urbanas con plantas de tratamiento el indicador es 0%, pues aunque todos tienen planes para la construcción de las plantas de tratamiento, no tienen financiamiento o no tienen donde construirla. En el caso de Zacapa que ya la tiene programada pero aún no inicia la construcción y solo atenderá parcialmente la cabecera. En el caso de Jocotán tiene problemas legales con el sitio donde la instalarán.

Finalmente solo la zona de la Unión hay un esfuerzo serio municipal de proteger el bosque húmedo de la zona de recarga. El cuadro 7 resume los resultados de los indicadores de respuesta.

Cuadro 7
Indicadores de Respuesta

Código	Municipio	Cobertura de saneamiento %	Número de plantas de tratamiento operando	Áreas protegidas
1901	Zacapa	73.0	0	
1909	La Unión	93.0	0	1
2001	Chiquimula	55.2	0	
2003	San Juan Ermita	51.0	0	
2004	Jocotán	44.0	0	
2005	Camotán	60.0	0	
2006	Olopa	66.0	0	
2009	Quezaltepeque	93.0	0	
2010	San Jacinto	11.0	0	

7. Conclusiones y recomendaciones

7.1. Conclusiones

- De los resultados obtenidos se estima que en general hay un almacenamiento a largo plazo en los acuíferos que potencialmente puede ser utilizado para suministrar la deficiencia de agua.
- La información de la situación de los sistemas de agua y de saneamiento a nivel municipal no está actualizada adecuadamente. La mayor parte de la información es de hace 10 años. Un esfuerzo importante es necesario para institucionalizar la información a nivel municipal, actualizar los planes de agua y saneamiento para que sean sistemas dinámicos del estado del agua y saneamiento en el lugar. Requerirá un trabajo de campo más intenso.
- Aunque la información de manantiales y pozos es relativamente buena, (adolece en algunos casos de que no reportan fechas de aforo), existe una discrepancia importante entre los volúmenes registrado por las fuentes subterráneas y el consumo estimado. Según los datos existentes se extrae mucho más agua de la que se necesita incluso es más de la que se requiere en el 2025 según las proyecciones.
- Los meses de octubre a mayo son los que tienen el índice de escasez crítico.
- Los meses de junio, julio, agosto y septiembre tienen exceso de agua, el cual se convierte en escorrentía y almacenamiento subterráneo.
- Las inversiones para lograr el 100% de cobertura son cuantiosas, ya que los municipios tienen que duplicar en la mayoría de los casos los volúmenes de agua que tienen actualmente. Deben hacerse las inversiones en base a decisiones bien fundamentadas que requieren un mejor conocimiento de parte de las autoridades municipales de la situación de sus servicios.
- Es obvio que con un adecuado manejo del recurso, a través de almacenamiento de las aguas para su uso en época seca y la no contaminación de las aguas, puede haber una condición muy favorable en el manejo de las aguas. Se puede tener una situación favorable durante todo el año de disponibilidad del recurso hídrico, ya que el balance muestra que en el largo plazo, hay un buen almacenamiento positivo en los acuíferos por año y una escorrentía que se pierde drenando hacia el río Motagua.

7.2. Recomendaciones

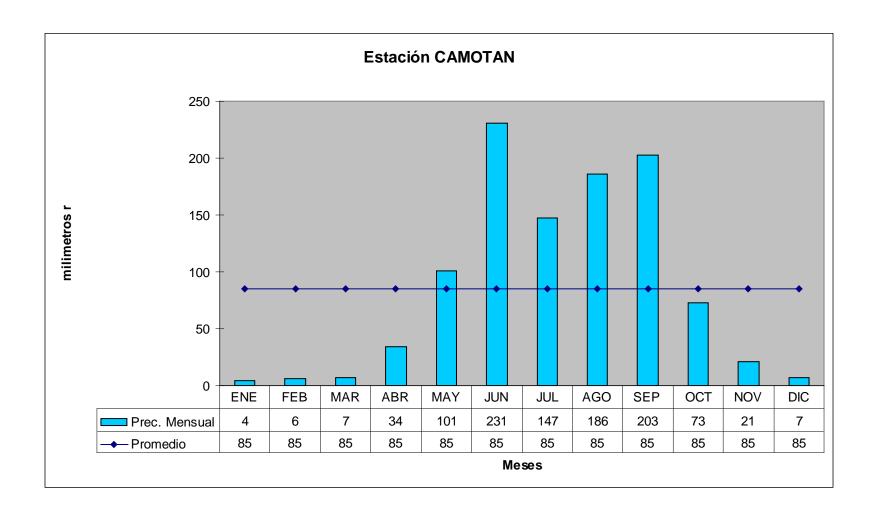
- Es necesario actualizar la información de los usos del agua. En el caso de agua potable se debe conseguir información de la cobertura actual, así como de continuidad y calidad de agua. Esto debe hacerse en coordinación con la municipalidad y debe institucionalizarse a través de planes de agua y saneamiento municipales. La información debe estar a nivel de comunidad y sistema.
- La información en el caso de riego, debe incluir las hectáreas regadas, el tipo de sistema y además deben ubicarse geográficamente.
- Además es necesario mejorar la información de los otros usos como turicentros, hidroeléctricas, beneficios de café y otros.
- Se debe ampliar el análisis a otros municipios e incluir todos aquellos que conformen las cuencas dentro del área, como Esquipulas, en la cuenca del río Olopa. Para el caso específico de la Unión, la mayor parte de su extensión es en la cuenca del Motagua
- Es necesario tomar acciones inmediatas para la gestión del agua, el hecho de que las plantas de tratamiento de aguas servidas no estén funcionando implica una contaminación de prácticamente todo el caudal superficial disponible.
- Si la información de fuentes es correcta, las municipalidades y comunidades deben verificar la eficiencia de los servicios, pues es notorio que se está extrayendo más agua de la que la demanda requiere.
- Una buena gestión del recurso, inicia por un buen conocimiento del estado de las cosas, por lo que se recomienda en la elaboración de planes dinámicos de la gestión del agua. Estos planes permitirán distribuir y aprovechar en mejor forma el recurso hídrico.

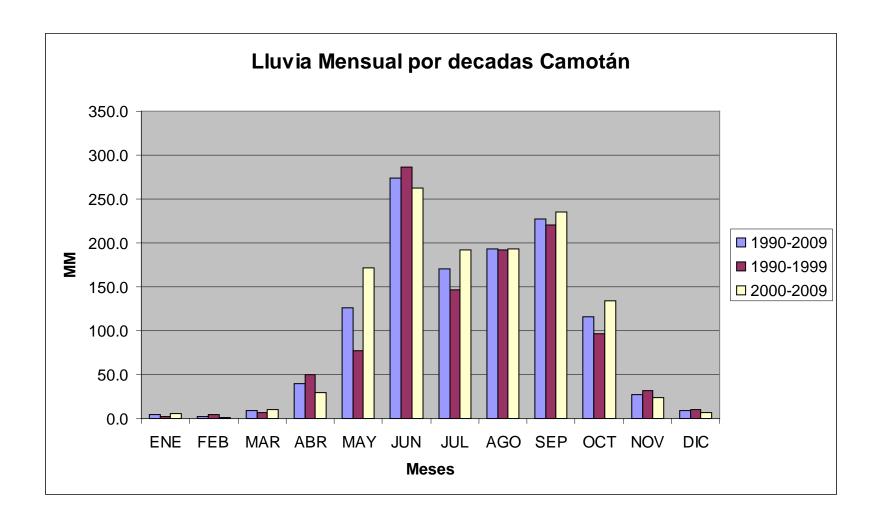
8. Bibliografía

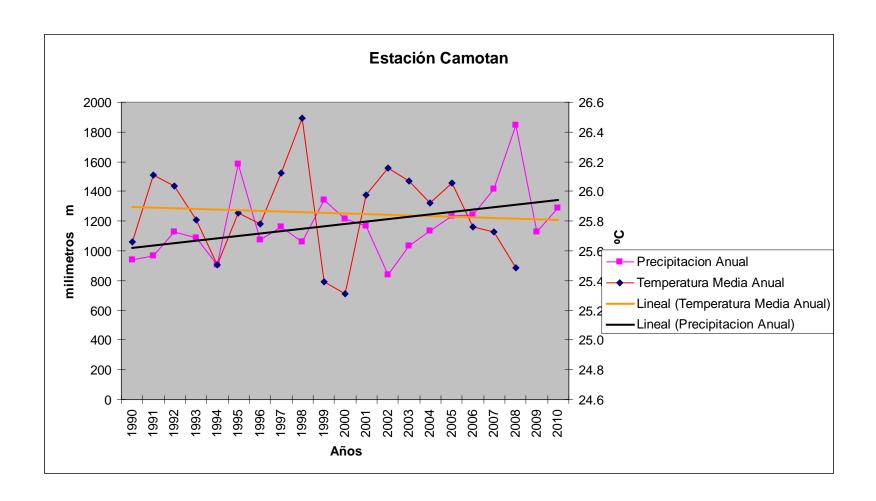
- Duarte Saldaña, José Roberto 2009. Informe Final CONSULTORIA EN HIDROLOGIA/HIDROGEOLOGIA PROGRAMA CAMARENA/GTZ BOSQUES Y AGUA "Conservación del Agua a través del Manejo Transfronterizo de los Recursos Naturales (CAMARENA)" Proyecto Trifinio.
- 2. INETER 2005, BALANCE HÍDRICO INTEGRADO Y DINAMICO EN EL SALVADOR COMPONENTE EVALUACION DE RECURSOS HIDRICOS Servicio Nacional de Estudios Territoriales San Salvador.
- 3. SIMPFENDÖRFER, C. 2000. Riego en Praderas, Tierra Adentro. Especial riego y drenaje. INIA Instituto de Investigaciones Agropecuarias (34): 36 38. www.inia.cl/medios/biblioteca/ta/NR25609.pdf
- 4. SEGEPLAN 2010, PLAN DE DESARROLLO JOCOTAN, CHIQUIMULA, Consejo Municipal de Desarrollo del Municipio de Jocotán, Chiquimula.
- 5. SEGEPLAN 2010, PLAN DE DESARROLLO CAMOTAN, CHIQUIMULA, Consejo Municipal de Desarrollo del Municipio de Camotán, Chiquimula.
- 6. SEGEPLAN 2010, PLAN DE DESARROLLO CHIQUIMULA, CHIQUIMULA, Consejo Municipal de Desarrollo del Municipio de Chiquimula, Chiquimula.
- 7. SEGEPLAN 2010, PLAN DE DESARROLLO QUETZALTEPEQUE, CHIQUIMULA, Consejo Municipal de Desarrollo del Municipio de Quetzaltepeque, Chiquimula.
- 8. SEGEPLAN 2010, PLAN DE DESARROLLO SAN JUAN ERMITA, CHIQUIMULA, Consejo Municipal de Desarrollo del Municipio de San Juan Ermita, Chiquimula.
- 9. SEGEPLAN 2010, PLAN DE DESARROLLO SAN JACINTO, CHIQUIMULA, Consejo Municipal de Desarrollo del Municipio de San Jacinto, Chiquimula.
- 10. SEGEPLAN 2010, PLAN DE DESARROLLO OLOPA, CHIQUIMULA, Consejo Municipal de Desarrollo del Municipio de Olopa, Chiquimula.
- 11. SEGEPLAN 2010, PLAN DE DESARROLLO LA UNION, ZACAPA, Consejo Municipal de Desarrollo del Municipio de LA Unión, Zacapa.

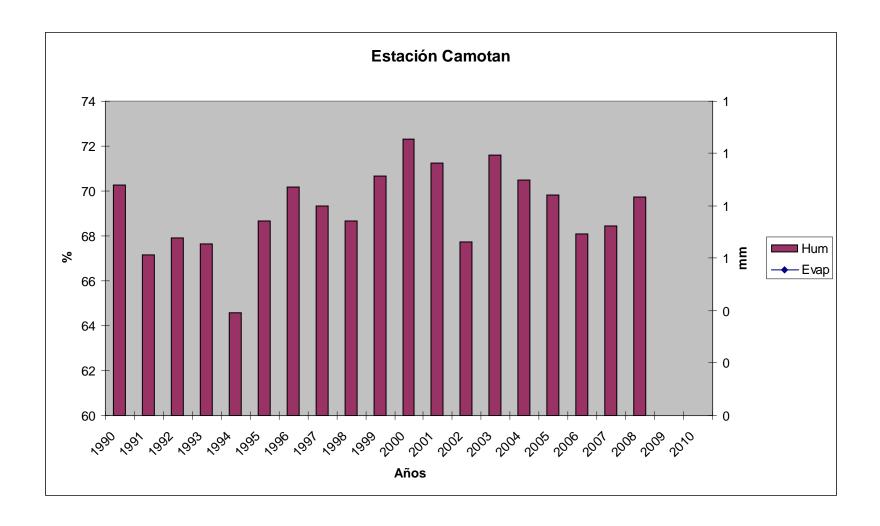
- 12. SEGEPLAN 2010, PLAN DE DESARROLLO ZACAPA, ZACAPA, Consejo Municipal de Desarrollo del Municipio de Zacapa, Zacapa.
- 13. IARNA 2004, PERFIL AMBIENTAL DE GUATEMALA, Instituto de Agricultura, Recursos Naturales y Ambiente, Instituto de Incidencia Ambiental, Facultad de Ciencias Ambientales y Agrícolas, Universidad Rafael Landívar.
- 14. Mapas base del Sistema de Información Geográfica de la Unidad de Planificación Geográfica y Gestión de Riesgo del Ministerio de Agricultura Ganadería y Alimentación (MAGA)
- 15. Información Hidrológica y Meteorológica proporcionada por el Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) de su red de estaciones.
- 16. Información del Ministerio de Salud Pública y Asistencia Social de vigilancia de los sistemas de agua, así como estadísticas de morbilidad y mortalidad del Area de salud de Chiquimula.
- 17. Cuadros resumen de el Sistema de Información de Agua y Saneamiento (SAS) UNEPAR, INFOM
- 18. Información proporcionada por ASORECH sobre sus proyectos y de las áreas de riego.

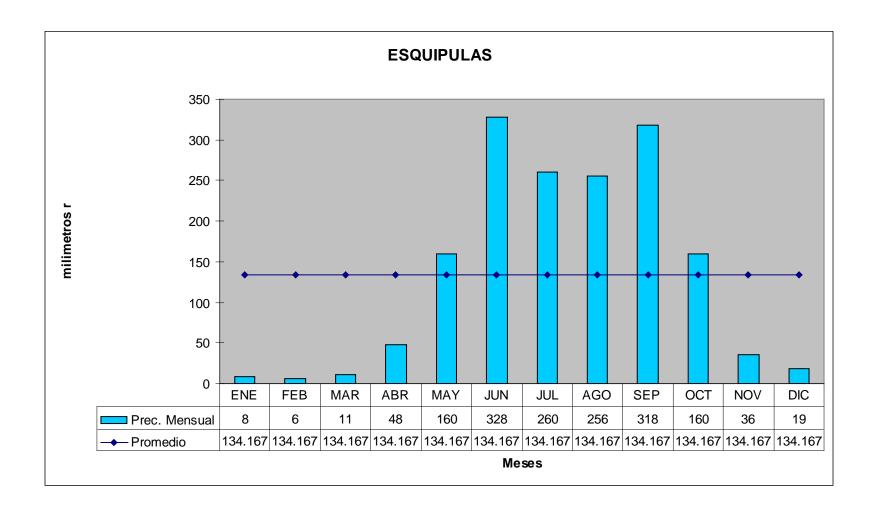
9. Anexos

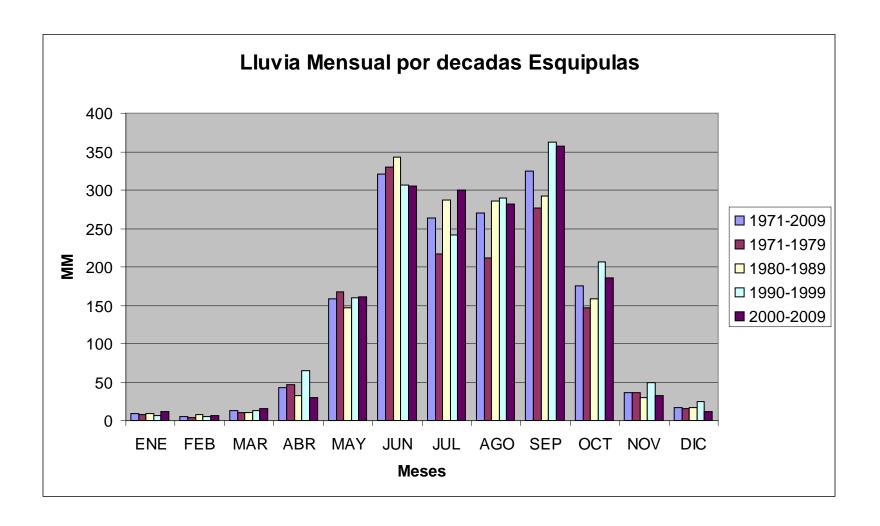

Anexo 1

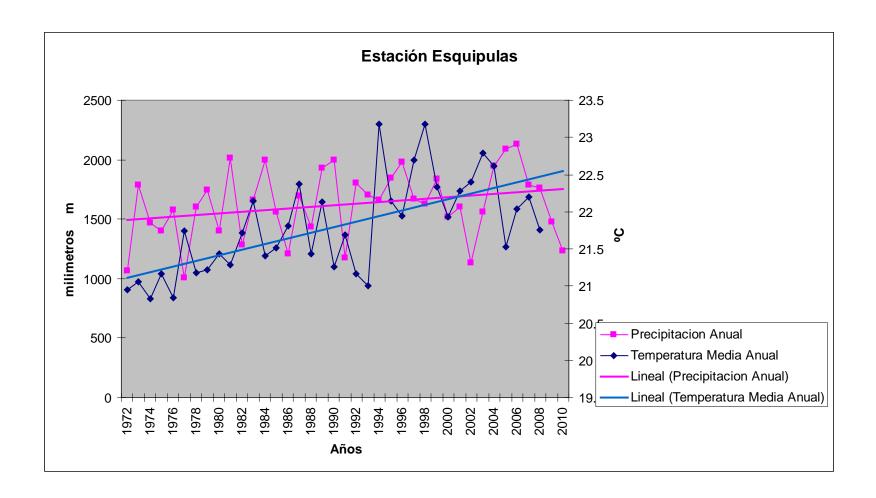

Información hidrometeorológica

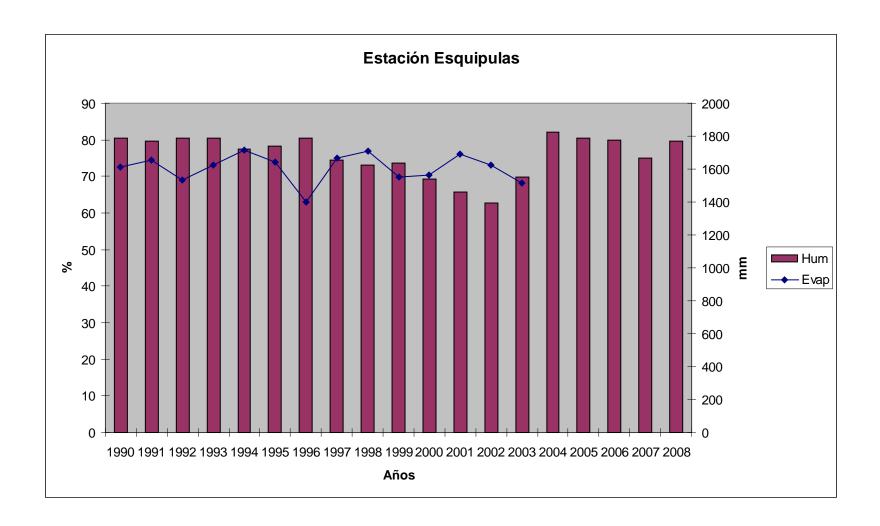

No.	Nombre	Latitud	Longitud	Elevación en m.	Código INSIVUMEH	Cuenca	Departamento	Estado
31	Camotán	14º49'14	89º22'22	471	04.02.01	Grande de Zacapa	Chiquimula	Tipo b
32	Esquipulas	14º33'32	89º20'31	950	04.04.02	Olopa	Chiquimula	Tipo a automática
33	Ipala	14º37'15	89º37'05	828	04.05.04	Grande de Zacapa	Chiquimula	Fuera de operación y con datos
136	La Fragua	14º57'51	89º35'04	210	22.03.01	Grande de Zacapa	Zacapa	Tipo a
137	La Unión	14º57'48	89º17'28	1000	22.06.02	Motagua	Zacapa	Tipo b
138	Pasabien	15º01'48	89º40'48	260	22.07.01	Motagua	Zacapa	Tipo b
158	Chiquimula FEGUA	14°47'50	89°32'08	380	04.01.01	Grande de Zacapa	Chiquimula	Fuera de operación y con datos
159	La Carbonera	14°44'12	89°13'18	710	04.04.03	Grande de Zacapa	Chiquimula	Fuera de operación y con datos
180	Agua Blanca	14°31'26	89°36'30	890	10.02.01	Ostua-Güija	Jutiapa	Fuera de operación y con datos
227	Gualán	15°06'29	89°21'23	129	22.04.01	Motagua	Zacapa	Tipo d automática satelital
64	Potrero Carrillo	14º45'38	89º55'56	1760	09.01.02	Motagua	Jalapa	Tipo b
65	La Ceibita	14º29'37	89º52'32	960	09.03.03	Ostua-Güija	Jalapa	Tipo b
66	Asunción Mita	14º20'04	89º42'21	478	10.03.01	Ostua-Güija	Jutiapa	Tipo b

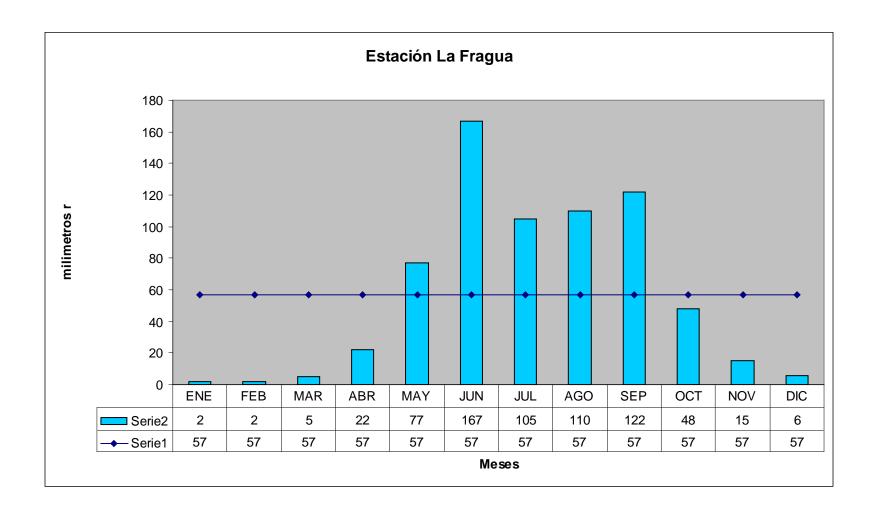

No.	Nombre	Latitud	Longitud	Elevación en m.	Código INSIVUMEH	Cuenca	Departamento	Estado
67	Jalpatagua	14º08'08	90º00'32	557	10.09.01	Paz	Jutiapa	Fuera de operación y con datos
69	Quesada Phc	14º15'58	90º02'16	980	10.13.01	Paz	Jutiapa	Tipo b
152	Monte Blanco	15°12'06	89°56'03	1000	02.04.02	Polochic	Baja Verapaz	Fuera de operación y con datos
178	Jalapa	14°38'00	89°59'12	1362	09.01.01	Motagua	Jalapa	Fuera de operación y con datos
179	Agro Santiago	14°30'05	90°03'54	1700	09.04.01	Ostua-Güija	Jalapa	Fuera de operación y con datos
181	Anguiatu Fegua	14°21'00	89°35'00	492	10.03.02	Ostua-Güija	Jutiapa	Fuera de operación y con datos
182	San Cristóbal Fronte	14°11'09	89°40'04	654	10.03.03	Ostua-Güija	Jutiapa	Fuera de operación y con datos
183	Tusamates	14°13'09	89°34'30	450	10.03.08	Ostua-Güija	Jutiapa	Fuera de operación y con datos
184	Atescatempa	14°13'00	89°41'00	585	10.04.01	Ostua-Güija	Jutiapa	Fuera de operación y con datos
199	Progreso	14°51'12	90°04'12	517	12.01.01	Motagua	Progreso	Fuera de operación y con datos
215	Amatillo	14°10'45	90°04'53	640	18.05.01	Los Esclavos	Santa Rosa	Fuera de operación y con datos
231	Candelaria de la Frontera	14°08'00	89°39'00	700				El Salvador
233	Metapar Fica, S.A.	14°20'00	89°27'00	480				El Salvador
234	Guija, Santa Ana	14°14'00	89°28'00	485				El Salvador
235	San Jerónimo, Santa Ana	14°21'00	89°35'00	490				El Salvador

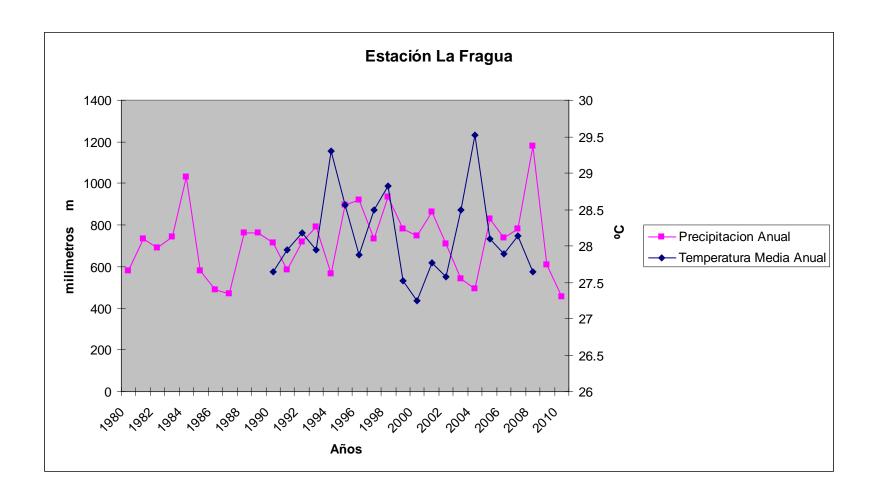

Cuadro Estaciones Meteorológicas de la zona de estudio.

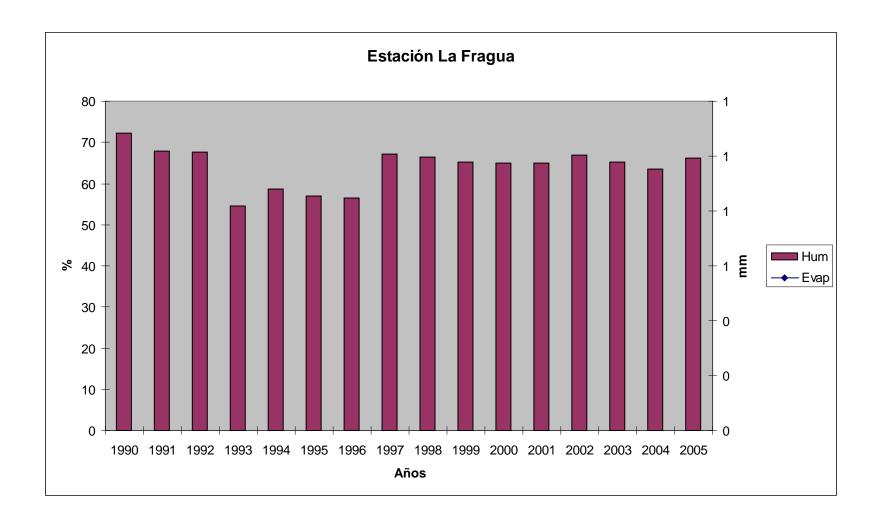












Anexo 2
Información hidrológica

Estaciones hidrológicas

N	Código	Nombre	Cuenca	Elevación	Área km²	Latitud	Longitud	Estado
			Grande de					INSIVUMEH en operación automática
90	2.01.01.01	Camotán	Zacapa	410.00	1413.12	14 49 20	89 22 15	digital
			Grande de					
91	2.01.01.02	Vado Hondo	Zacapa	0.00	0.00	14 43 08	89 30 25	INSIVUMEH en operación
			Grande de					
92	2.01.01.03	Copán	Zacapa	600.00	583.00	14 48 30	89 13 24	INDE en operación
			Grande de					Insivumeh en operación automática
93	2.01.01.04	Petapilla	Zacapa	330.00	1226.94	14 50 09	89 30 43	digital
			Grande de					
94	2.01.02.01	Volcán Ipala	Zacapa	1489.00	0.60	14 33 07	89 38 38	INSIVUMEH lago cancelada
98	2.02.01.04	Pasabien	Motagua	291.00	78.62	15 02 36	89 41 08	INSIVUMEH cancelada
				_51.00				
99	2.02.01.05	El Tule	Motagua	581.00	48.44	15 04 27	89 37 04	INDE cancelada
								INSIVUMEH en operación automática
106	2.02.01.13	Gualán	Motagua	0.00	1601.60	15 06 40	89 21 42	digital

Caudales Camotán

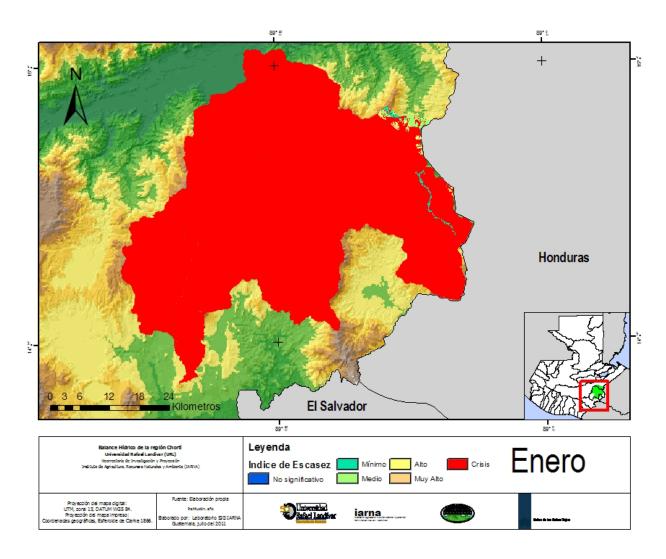
Estación Camotán	Q m ³ /s en base a diarios	Q en mm	Q por km²	Q entra Honduras m³/s
Enero	15.899308	42,584,707,780,219,800.00	0.01125121	9.070162134
Febrero	11.309575	27,360,123,327,624,100.00	0.00800327	6.451832623
Marzo	7.0772567	18,955,724,231,920,700.00	0.00500825	4.037399835
Abril	5.4795062	14,202,880,198,066,500.00	0.00387759	3.125922754
Mayo	10.218005	27,367,904,235,190,100.00	0.00723081	5.829118987
Junio	42.074285	109,056,547,200,000,000.00	0.02977404	24.0023388
Julio	43.41844	116,291,948,800,000,000.00	0.03072523	24.76914568
Agosto	58.047601	155,474,695,542,857,000.00	0.04107762	33.11472052
Septiembre	88.051425	228,229,293,682,759,000.00	0.06230994	50.23115963
Octubre	59.583358	159,588,067,016,092,000.00	0.0421644	33.99083187
Noviembre	29.523136	76,523,968,000,000,000.00	0.02089216	16.84221859
Diciembre	22.315207	59,769,051,140,722,300.00	0.01579145	12.73027368
Anual		1,035,404,911,155,450,000.00	0.02323403	18.73011436

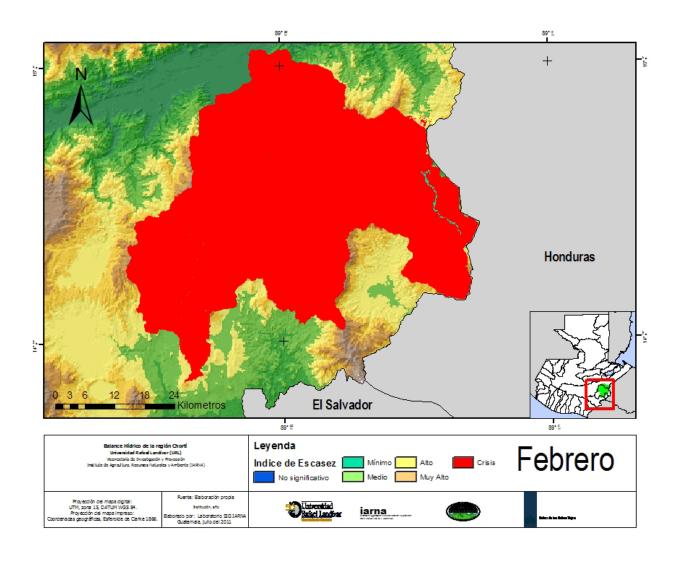
Caudales mensuales Petapilla

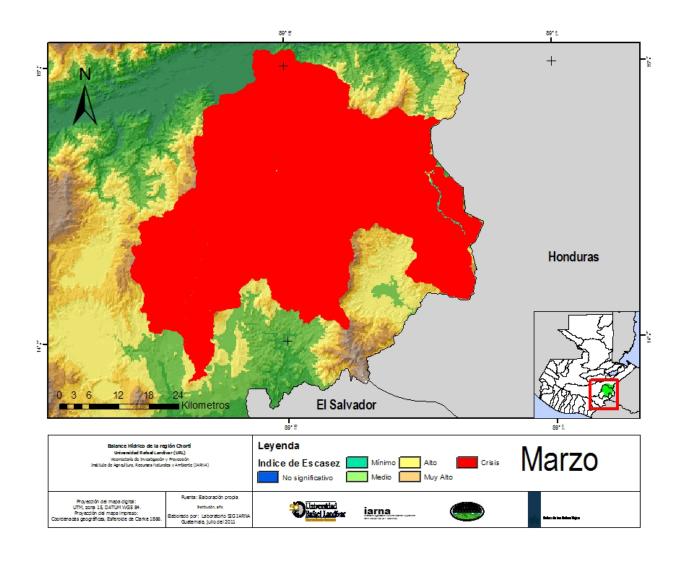
Estación Petapilla	Q m³/s en base a diarios	Q en mm	Q por km²	Q desde Camotán a la desembocadura en m³/s	en mm por mes	Q sale al Motagua en mm
Enero	1.81	4,847,904,000,000,000.00	0.00147521	2.755922457	7,381,462,710,156,980.00	49,966,170,490,376,800.00
Febrero	1.38	3,338,496,000,000,000.00	0.00112475	2.101200548	5,627,855,546,970,510.00	32,987,978,874,594,600.00
Marzo	1.43	3,830,112,000,000,000.00	0.0011655	2.177331002	5,831,763,356,643,360.00	24,787,487,588,564,100.00
Abril	1.75	4,536,000,000,000,000.00	0.00142631	2.664565912	7,136,773,338,549,560.00	21,339,653,536,616,000.00
Mayo	2.92	7,820,928,000,000,000.00	0.0023799	4.44601855	11,908,216,084,894,100.00	39,276,120,320,084,200.00
Junio	12.11	31,389,120,000,000,000.00	0.00987008	18.43879611	49,386,471,502,763,000.00	158,443,018,702,763,000.00
Julio	14.32	38,354,688,000,000,000.00	0.01167131	21.80376221	58,399,196,690,302,700.00	174,691,145,490,303,000.00
Agosto	17.81	47,702,304,000,000,000.00	0.01451579	27.11766794	72,631,961,805,467,200.00	228,106,657,348,324,000.00
Septiembre	26	67,392,000,000,000,000.00	0.02119093	39.58783641	106,032,061,029,879,000.00	334,261,354,712,638,000.00
Octubre	16.07	43,041,888,000,000,000.00	0.01309762	24.46832812	65,535,970,028,852,300.00	225,124,037,044,944,000.00
Noviembre	5.48	14,204,160,000,000,000.00	0.0044664	8.343897827	22,348,295,940,143,800.00	98,872,263,940,143,700.00
Diciembre	2.21	5,919,264,000,000,000.00	0.00180123	3.364966095	9,012,725,187,539,730.00	68,781,776,328,262,000.00
Anual		272,376,864,000,000,000.00				

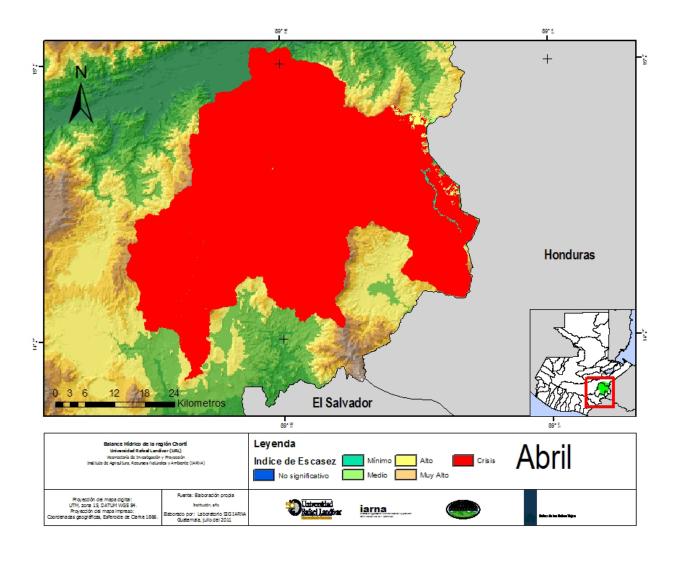
Balance hídrico 2010 de la región Ch'orti' en Guatemala. Documento técnico.

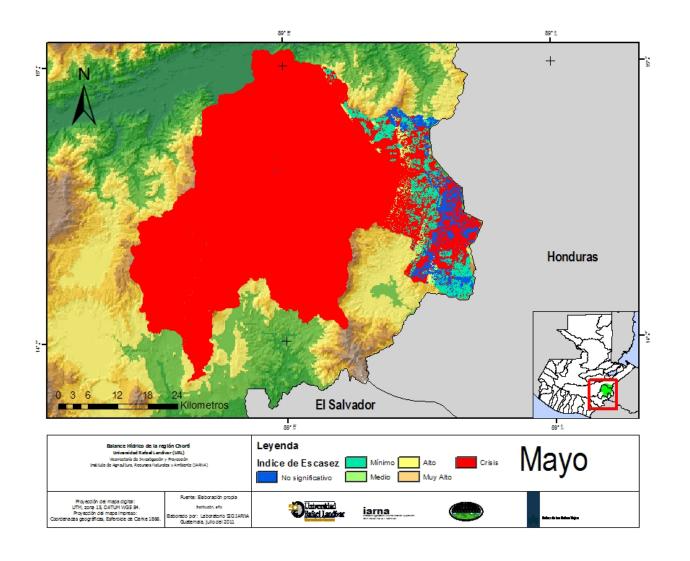
Anexo 3


Indicadores	Unidades	Frecuencia	Datos	Fuente	Cálculo			
De Estado (por cuenca)								
Volumen disponible mensual (Od)	Miles de m ³	Mensual	Volumen disponible (Od)	Balance hídrico	Conversión de mm a miles de m ³			
Valuman diananihla nan aénita (Od/h)	,,,3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Managal	Volumen disponible (Od)	Balance hídrico	O4*1000/D			
Volumen disponible per cápita (Od/h)	m³ per cápita	Mensual	Población año índice P _i Proyección del censo al año i		Od*1000/P _i			
De Presión (por cuenca)								
Uso de agua sin agricultura de secano	Miles de m ³	Mensual	Demanda total (D)	Balance hídrico	Conversión de mm a miles de m ³			
(D-R)	willes de m	ivierisuai	Demanda riego (R)	Balance hídrico	Conversión de mm a miles de m ³			
Lles de agua sin agricultura de secono y sin			Demanda total (D)	Balance hídrico	Conversión de mm a miles de m ³			
Uso de agua sin agricultura de secano y sin hidroeléctricas(D-R-H)	Miles de m ³	Mensual	Demanda riego (R)	Balance hídrico	Conversión de mm a miles de m ³			
D-N-11)			Demanda hidroeléctricas (H)	Balance hídrico	Conversión de mm a miles de m ³			
Uso de agua (D)	Miles de m ³	Mensual	Uso de agua o demanda total (D)	Balance hídrico	Conversión de mm a miles de m ³			
Uso de agua per cápita	m³ per cápita	Mensual	Demanda total (D)	Balance hídrico	D*1000/P _i			
D/h	m per capita	ivierisuai	Población año índice P _i	Proyección del censo al año i				
	No. significativo,	Mensual	Volumen disponible (Od)	Balance hídrico	D/Od Si D/Od <.01 No significativo; D/Od <			
Escasez	mínimo, medio, alto, muy alto, crisis		Demanda total (D)	Balance hídrico	0.1 Mínimo; D/Od < 0.2 Medio; D/Od < 0.5 Alto; D/Od < 1 Muy Alto; D/Od > 1 Crisis			
De Impacto (por municipio o comunidad)								
Cobertura de agua potable	%	Anual	No. de viviendas con servicio (VCS)	PMAYS/SAS *	VCS/V			


Indicadores	Unidades	Frecuencia	Datos	Fuente	Cálculo	
			No. total de viviendas (V)	Catastro/Censo/PMAYS/SAS *		
			Horas de servicio (HS)	SAS	HS/D*24 Si el servicio es cada dos	
Continuidad de agua potable	Horas/dia	Anual	Frecuencia en días (D)	SAS	dias y reciben cuatro horas la formula es: (4/2*24) es decir 0.083	
Calidad de agua	Apta / No apta	Anual	Resultados de las muestras	Área de salud	El resultado de las muestras que recibe el Ministerio de Salud	
Incidencia de enfermedades de origen			No de casos de parasitismo intestinal (NP)	Área de salud		
hídrico	Tasa	Anual	No. de casos de diarrea (ND)	Área de salud	(NP+ND+NA)/P _i /1000	
No. de casos /1,000 habitantes (Nivel municipal)			No. de casos de amebas (NA)	Área de salud		
municipal)			Población año índice P _i	Proyección del censo al año i		
Incidencia de enfermedades de origen			No de casos de parasitismo intestinal en comunidad "x" (NPC)	Área o puesto de salud		
hídrico No. de casos (Nivel comunitario)	No. de Casos	Anual	No. de casos de diarrea en comunidad "x" (NDC)	Área o puesto de salud	(NPC+NDC+NAC)	
			No. de casos de amebas en comunidad "x" (NAC)	Área o puesto de salud		
Incidencia de casos mortales por			No de casos de muertes por parasitismo intestinal (MP)	Área de salud		
enfermedades de origen hídrico No. de casos /10,000 habitantes	Tasa	Anual	No. de casos mortales de diarrea (MD)	Área de salud	(MP+MD)/P _i /10000	
(Nivel Municipal)			Población año índice P _i	Proyección del censo al año i	(MP+MD)/P _i /10000	
Incidencia de casos mortales por enfermedades de origen hídrico No. de casos	No. de Casos	Anual	No de muertes por parasitismo intestinal en comunidad "x" (MPC)	Área o puesto de salud	(MPC+MDC)	


Indicadores	Unidades	Frecuencia	Datos	Fuente	Cálculo	
(Nivel comunitario)			No. de muertes por diarrea en comunidad "x" (MDC)	Área o puesto de salud		
Mortalidad de niños menores de 5 años por enfermedades de origen hídrico No. casos	No. de casos	Anual	No de casos de muertes por parasitismo intestinal (MPN5)	Área de salud	(MPN5+MDN5)	
(Nivel municipal)			No. de casos mortales de diarrea (MDN5)	Área de salud		
Mortalidad de niños menores de 5 años por enfermedades de origen hídrico	de origen hídrico		No de muertes niños < 5 años por parasitismo intestinal en comunidad "x" (MN5PC)	Área o puesto de salud	(MDNEC MDNEC)	
No. casos (Nivel comunitario)	No. de casos	Anual	No. de muertes niños < 5 años por diarrea en comunidad "x" (MDN5C)	Área o puesto de salud	(MPN5C+MDN5C)	
De Respuesta (por municipio o comunidad)						
Cobertura de saneamiento	ra de saneamiento %		No. de viviendas con servicio de saneamiento (VCSAN)	PMAYS/SAS *	VCSAN/V	
			No. total de viviendas (V)	Catastro/Censo/PMAYS/SAS *		
Número de plantas de tratamiento de aguas residuales	No. de PTAR	Anual	Plantas operando PTAR	SAS	No. de PTAR	
Áreas protegidas en cada municipio	No. de áreas protegidas	Anual	Áreas protegidas declaradas y cuidadas	Municipalidades/ CONAP	No. de áreas protegidas	


^{*} PMAYS Plan Municipal de Agua y Saneamiento, SAS Sistema de Información de Agua y Saneamiento (UNEPAR/INFOM).


Anexo 4 **Mapas de escasez**

